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Renormalized canonical perturbation theory for stochastic 
propagators 

R L Dewar 
Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, Canberra, ACT 2600, Australia 

Received 3 August 1976 

Abstract. A canonical transformation which removes the coherent oscillatory motion of a 
particle in a stochastic potential (the renormalized oscillation-centre transformation) is 
constructed by a new classical perturbation method using Lie operators and Green function 
techniques. A frequency and wavevector dependent particle-wave collision operator is 
calculated explicitly for stationary, homogeneous electrostatic turbulence in the short 
wavelength limit. The width of the resonance is proportional to the one-third power of the 
quasilinear diffusion coefficient, in agreement with Dupree’s 1966 result. However the k 
dependence is quite different from that expected from a simple Wiener process model. In 
fact, at large k spatial diffusion dominates over velocity diffusion, in sharp contrast with 
previous theories. 

1. Introduction 

It has been remarked by several authors (Cook and Sanderson 1974, Rolland 1976) 
that the weak coupling theory of Dupree (1966) and Weinstock (1969) of stochastic 
acceleration of a particle in a random potential (as in a plasma) is valid only in the same 
limit as unrenormalized quasilinear theory (i.e. in the case of a broad spectrum of weak 
waves). Various authors have improved on the original theory, but the basic picture of 
the average particle motion being a Wiener process (i.e. ((AP)~)K t,  AX)^)^ t 3 )  
remains unchanged, except that Rolland (1976) suggests that it breaks down when 
partial trapping of the particles in troughs of the waves occurs. The reason for this is 
intuitively clear since trapping induces vortex motion in phase space, thus producing 
behaviour more akin to two-dimensional Brownian motion in phase space  AX)^) K t, 

A logical way to proceed beyond the weak turbulence approximation is to develop a 
general perturbation theory for the single particle propagator since this contains all the 
information needed to calculate response functions, correlation functions, etc. Such a 
formalism has been set up by Marcuvitz (1974), and independently by Cook (1975). 
Secularities are removed by adding an effective collision term to both sides of the 
equation of motion for the propagator, thus introducing resonance broadening into the 
Green function and eliminating secularities. We term this method additive renormali- 
zafion. The Marcuvitz-Cook expansion does not appear to have been much exploited, 
and we can discern two reasons for this: (i) their Green function obeys a non-Markovian 
equation, and (ii) spatial diffusion does not occur at any finite order of the expansion. In 
the present paper we show that (i) is not an insuperable problem, by finding an 

((AP)2)at). 
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asymptotic solution in the large k limit, while (ii) may be overcome by applying a 
canonical transformation to the system before solving for the Green function. We term 
this multiplicative renormalization. 

The transformed Hamiltonian is a rapidly varying function of momentum, thus 
introducing spatial diffusion at lowest order. The resulting theory of resonance 
broadening gives a broadening similar to that of Dupree in the broad spectrum limit, but 
the physical mechanism is very different. We find that, at short wavelength, spatial 
diffusion is always the dominant broadening mechanism, while at medium wavelengths 
it is competitive with velocity space diffusion. That is, the Wiener process model is never 
valid. 

The canonical transformation employed is similar to the ‘oscillation-centre’ trans- 
formation (Dewar 1973, Johnston 1976), but differs from it because an operator 
method (Deprit 1969) is used rather than conventional generating-function methods, 
and, more importantly, because it is combined with the Marcuvitz-Cook renormaliza- 
tion scheme to give a self-consistent and causal generalized Hamilton-Jacobi equation, 
rather than the ad hoc acausal filter-function method used in the oscillation-centre 
theory. To distinguish the present transformation from the previous one we term it the 
renormalized oscillation -centre transformation. 

Kawakami (1970), Kawakami and Yagashita (1971), and Kawakami and Sanuki 
(1971) have used an operator technique due to Hori (1966) to achieve what is in effect 
an oscillation-centre transformation. This appears to be essentially the same as our 
unrenormalized theory, with a slightly different filter function. There is no resonance 
broadening (although there is a shift in the position of the resonance) because a 
renormalized Green function has not been used. 

The basic idea involved is in some ways similar to that behind the ‘interaction 
picture’ frequently used to take out some unwanted part of the motion by a unitary 
factorization of the propagator. However the part we take out is the coherent oscillatory 
motion, whereas the interaction picture factorizes out the unperturbed motion. Since 
all the coherent motion is removed, the oscillation-centre motion is the truly stochastic 
part of the orbit-there is no need for phase-mixing arguments to justify omission of 
non-resonant terms. Also, because most of the interaction is removed, the mean square 
interaction Hamiltonian is smaller after the transformation, and convergence of the 
series for the new Green function should be faster than that for the untransformed one. 
Put another way, our Green function is much closer to the exact oscillation-centre 
propagator than is the untransformed Green function because the untransformed 
Green function ‘smears out’ from its initial delta function character very rapidly, owing 
to the coherent response to non-resonant waves. 

In § 2 we set up an operator method for canonical transformations, and in § 3 we 
specify how the generating function is to be constructed and the new Hamiltonian 
obtained. In $ 4  we review the renormalized perturbation theory for the Green 
function of a particle moving in a stochastic external potential. No attempt is made to 
obtain self-consistency with Maxwell’s equations. Such a postponement of self- 
consistency implies a self-consistent field or Vlasov approximation to the system, since 
polarization effects are thereby ignored. 

In 0 5 we derive ‘quasilinear’ equations for the single particle Green function and 
particle-wave collision operator for a particle moving in a stationary, homogeneous 
spectrum of waves. The solution at large k is found in § 6, where we also make a rough 
estimate for medium k. We find the width of the resonance to scale as the one-third 
power of the quasilinear diffusion coefficient, as predicted by Dupree (1966), but we 
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find that the asymptotic behaviour at large k is that the width increases as k, rather than 
k 2’3 as predicted by Dupree’s analysis. 

Taking this behaviour as evidence of partial trapping leads to a seeming paradox 
since, in the broad spectrum limit, the correlation time of the non-resonant waves (as 
seen by the particle) is much less than the ‘trapping time’. Thus one might expect the 
particle to be scattered out of a potential trough before it has time to bounce. We 
believe the resolution is because much of the response to the non-resonant waves 
averages out-the average momentum is to some extent an adiabatic invariant. The 
oscillation-centre transformation brings out this invariance as much as possible. 

2. Canonical transformation operator 

Following Deprit (1969) we define the Lie derivative Lw generated by a function 
W(q,  p ,  t )  by its action on an arbitrary function +(q, p ,  t )  

L d  ={+, W } ,  ( l a )  
where {4, W) is the Poisson bracket of 4 and W. That is, in a phase space of dimension 
2N, 

(Normally, of course, N = 3 ,  but the results of this section actually apply to any 
Hamiltonian system of arbitrary dimensionality.) 

We also define the adjoint operator L L  by 

where the arrows indicate that the derivatives act to the left. If we consider Lw and L L  
to be operators in the Hilbert space of functions 4(q, p ,  t ) ,  then Lw is an anti-Hermitian 
operator (Prigogine 1962) 

Lt,= -Lw. (3) 
Suppose that W also depends on some parameter E (such as the charge on the particle) 
so that 

w =  W(q, p ,  t ;  e). (4) 

acw/ae = L & ~ ,  (5a) 

C W ( E  = 0 )  = 1. (5b)  

Then we define the canonical transformation operator Cw by the operator equation 

with the initial condition 

In terms of C, the solution to the inhomogeneous equation 

aA/aE = L,A + B 
is 

r e  

A = cw J C,’B de + CwA ( E  = 0) ,  
0 
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where A and B can be either functions or operators, and C$ is the inverse canonical 
transformation operator, defined by the equation 

ac-, ' /aE = -c-,'L~, 

C$(E = 0) = 1.  

and the initial condition 

(86) 

It is a simple matter to verify that 
C L -  1 - c- 1 w -  w c w = 1 ,  (9) 

by differentiation with respect to E. If we take the adjoint of equations ( 5 ) ,  and use 
equation (3), we find that C', obeys the defining equations (8) for C;. Hence Cw is a 
unitary operator 

c',= c;. (10) 

It is of interest to compare our operator Cw with the operator Ew of Deprit (1969), 
defined by 

By differentiating with respect to E it is easy to show that 

aEw/aE = E,L,, (12) 

Ew= CIk. (13) 

whence we have, by equations (1) and (8) 

We find that the perturbation theory is simpler in terms of Cw, and also Cw has a closer 
analogy with the time evolution operator of quantum mechanics. Thus we can write 
down the solution of equation (5a) by analogy (see, e.g., Bjorken and Drell 1965): 

Cw = 1 + Ioe del LW(e1) + I' del I de2 LW(E1)LW(EZ) + . . . 
€ 1  

0 0 

where 'if is the E ordering operator. The inverse operator is constructed trivially from 
equation (14a) by unitarity 

C$ = 1 - io' del LW(El) + I' del I" de2 L W ( ~ 2 ) L W ( ~ l ) - .  . . . (14b) 

To show that Cw does in fact generate a canonical transformation, define the 
0 0 

transformed variables q: and p f  by 

qF(q, P, t )  = Cwqi, P F ( ~ ,  P,  t> = Cfli. (15) 
If we can show that the fundamental Poisson bracket relations are preserved then the 
transformation is canonical. That this is the case follows from the theorem 

C W { A  $} = {CW4, C W $ }  (16) 
for arbitrary 4 and $. Equation (16) is readily proved by showing that the difference of 
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the right- and left-hand sides obeys equation (6) with B = 0 and A (E = 0) = 0, and thus 
vanishes for all E by equation (7). Use has been made of Jacobi's identity in the form 

Lw{4, +I = Wd, +}+{A L d l .  

C d ( 4 ,  P )  = 4(CW% CWP) 

(17) 

It is similarly possible to show that 

(18) 

for arbitrary 4. Using equations (1) and (9) we can rewrite equation (16) as the 
operator identity 

C,L,C-,' = Lc*. (19a) 

C-,'L,C, = L & ? +  (19b) 

By replacing C#J with C-,'4 we also find 

Sudarshan and Mukunda (1974) shaw that equations (16) and (18) are consequences of 
the fact that the canonical transformations form a realization of a Lie group. 

In the next section we shall have occasion to use the identity 

ac,/at = LK,, (20) 
where 

By differentiating equation (4) with respect to t and by using equations (6) and (7) we 
can show 

aC&t = C, [ C;Law/a,Cw de, 

which can be manipulated into the form of equation (20) by use of equations (19a) and 
(196). 

3. Renormalized oscillation-centre transformation 

In equation (15) we take 4: and p? to be the exact phase-space coordinates of a particle 
with Hamiltonian H(q*, p * ,  t), consisting of an average part Ho and a fluctuating part 
I?. The coordinates qi, pi are to be the phase-space coordinates of the oscillation centre 
(Dewar 1973, Johnston 1976) which moves like a particle with Hamiltonian K(4,  p ,  t), 
which also has an average part K and a fluctuating part k. Physically the oscillation 
centre is the averaged position of the particle, with the coherent response to I? 
removed. Thus k is to be a purely stochastic driving term. It is the purpose of this 
section to construct a canonical transformation conforming to this physical picture. 

Since the oscillation centre is to be always close to the exact position we require W to 
be always a small quantity. This is partly ensured by requiring that W average to zero: 

(W(1)) = 0, (22) 
where the argument 1 is an abbreviation for the 'world point' (41i, pli, tl), i = 1,2, . . . , N 
(and similarly for 2,3,  etc.). The angle brackets ( ) denote the ensemble average. 
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As Cw maps the oscillation-centre coordinates into the exact coordinates, it is 
actually the inverse of the oscillation-centre transformation. We shall call this the 
clothing transformation, and Cw the clothing operator, since we may think of Cw as 
clothing (or dressing) the bare particle with its fluctuation cloud. This is very similar to 
the 'dressed test particle' picture (Hubbard 1961, Rostoker 1964a, b). 

As an alternative to thinking of particle coordinates we can work with the exact 
single-particle distribution function f*(q, p, t )  and the oscillation-centre distribution 
function f (q ,  p, t ) .  Because the transformation is canonical, the distribution function is 
an invariant, fr(q*,  p*, t )  =f(q, p, t ) ,  or, by equations (10) and (18) 

f ( q ,  PI 0 = Gf (9, P ,  t ) .  (23) 

(Note that the operator mapping f into f *  is the inverse of the operator mapping q andp 
into q* and p*.) The two distribution functions obey the Liouville equations 

a p / a t  + LX = 0, 

af/at+LKf =o.  
Multiplying equation (23) by C, and substituting for f in equation (25) we find 

(L&W- CWLH+LKCW)f* = O ,  (26) 

where V is given by equation (21), and we have used equation (24). Using equation 
(19a) we see that equation (26) can be satisfied for arbitrary f* if and only if 

K = C w H - V  (27) 

(to within a constant which we have set to zero). 

equation for W 
By multiplying equation (27) by C$ and differentiating with respect to E we find an 

aw aH aK 
-+LL,W=C,---. 
at ae ae 

This is simply a different version of equation (27), and does not define Win  any way, 
unless K is specified somehow. We could require that K be independent of the qi, 
making the pi constants of the motion, but this would make W secular due to 
resonances. We avoid this by allowing K to have the fluctuating part k, which we take 
to be a linear functional of W. That is 

K = R + k ,  (29) 
where 

k(1) = 1' de 1 d2 Z(112)W(2), 

(-$+LkW) W(l)+[ d2 Z(lP)W(2) = S(1), 

d2 = dNq2 dNp2 dt,. (30) 
0 

Substitution of equation (30) in equation (28) gives 

(31) 

with the source term S given by 
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It is now seen that Z(l(2) must be chosen to be a generalized 'collision' kernel 
representating the scattering of the particle by resonant waves. Outside the resonant 
region C(l(2) is zero, k(1) vanishes, and Deprit's (1969) perturbation theory applies. A 
way of constructingZ(112) will be given in the next section where we also define a Green 
function, G(112), for the operator acting on W o n  the left-hand side of equation (31). 
We are free to choose initial conditions so that W is defined by the particular solution 

W(l) = I d2 G(112)S(2). (33) 

Define the two-point function F( 112) by the equation 

F(1(2)= I d3 2(1)3)G(3(2). 

Then, from equations (30) and (33): 

k(1) = 1' de 1 d2 F(1(2)S(2). 
0 

(34) 

(35) 

It is seen from equation (35) that F(112) replaces the filter function @(tl - t2) introduced 
ad hoc in unrenormalized oscillation-centre theory (Dewar 1973). In the present 
theory F ( l (2 )  is determined self-consistently, An even more important change is that 
F ( l (2 )  is a causal function, unlike @(tl - t2)  which, being an even function of tl - t2, was 
acausal. 

In order to satisfy equation (22), with W( 1) given by equation (33), we must require 
that 

aK0 = ( cw(l)- + LW& 1)). 
a E  a€ 

Equations (32), (33), (35) and (36) can be solved to arbitrary order in E by power series 
expansion, thus completing the specification of the transformation. 

We shall give the first few terms in the series. Following Deprit (1969) we write 

Defining 
L1= Lw,, Lz=Lw,, etc, 

equations (14a) and (14b) give 

c, = 1 +EL1 +;E2(L:+ Lz)  + i E 3 ( L ? +  LlL.2+2L2Ll + L3)+ * . . 
c-1- (39) , - 1-€L1+;E2(L:-L2)-~E3(L~-L2L1-2L1L2+L3)+.  . . . 

We also write 

When k is calculated from equation (35) it will be a series of the form 

while (36) will give 
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We treat G(112) and F(l(2) as 0(1) quantities and use operator notation for brevity 
(e.g., equation (33) becomes W = GS), so that 

We shall not give Wand 2 as they are trivially related to S by equations (33) and (35). 

4. Single particle Green functions 

We define the (retarded) propagator for the exact particle motion, fi(112), by the 
equations 

( a / a t l )  fi(112) + L H ( 1 )  fi( 112) = 6 (11% 

fi(112)=0, t l <  f 2 ,  (47) 

(46) 

where S(1)2)=SSN(q1-qz) SN(p1-p2) S ( t l - t z ) .  Marcuvitz (1974) and Cook (1975) 
have shown how to set up a formal perturbation theory for fi(112) using the average of 
fi(112) as a Green function, but, since fi(112) describes both coherent and stochastic 
motion, we believe the convergence to be slower than is possible if we instead solve for 
the oscillation-centre propagator &( 112), defined by the equations 

The two propagators are related by unitary transformation 

m 12) = C W ( 1 )  fi(1 WtW(2). (50) 

Since equations (46) and (48) are identical, save for the replacement of H by K,  the 
Marcuvitz-Cook perturbation theory can be taken over unchanged. The central idea is 
to introduce the Green function 

G(112) = (&(112)), (51) 
and to postulate that it obeys the Non-Markovian equation 

(a+Lgcl))  at1 G(112)+1 d3 8(113)G(312)=S(1(2), (52) 

where X(113) is the effective collision kernel introduced in the previous section. Both 
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G(l(2) and X(112) are causal functions 

G(112)=0, t l < t 2 ;  2 (1(2)=0,  t l < t 2 .  (53) 

The reason for using G(112) as a Green function is that it is the closest possible 
non-stochastic approximation to 6(1/2) .  

As Rolland (1976) points out, G( 112) does not obey the group property, that is, for 
tl  > i > t2 ,  

d3 G(1J3)S(t3-i)G(312)# G(1(2), (54) 

and G(112) should not, therefore, be called a propagator. However, G(112) is still a 
Green function, and that is all we need. It follows directly from equation (52) that the 
solution to the equations 

is 

4(1) = I d2 G(1(2)c(2). (56)  

We replace by Ak, so that 

where A is a formal expansion parameter (to be set equal to 1 at the end), and expand 2 
and G in the series 

We substitute equations (58) and (59) into equation (48), equate equal powers of A on 
the left- and right-hand sides, and use equations (52) and (55) to obtain 

G‘” = -GLkG, G(’)= G(L2GLa + P ) G ,  (60) 

and so on, where we have adopted the same operator notation as was used in equation 
(43). From equations (51) and (59) we need 

(G(n)(112)) = 0, rial. (61) 

X‘2’( 1 12) = (LR(l)G( 112>&(2,>. 

To satisfy this for n = 2 we need 

(62) 
It is seen that X(2) is a generalized Fokker-Planck diffusion operator. Because all the 

coherent response (linear and non-linear) has already been taken out by the oscillation- 
centre transformation there is no need to continue the series further unless large-angle 
collisions are important. Since even trapping effects occur in a small region of phase 
space we conjecture that equation (62) will be adequate for most purposes. If we 
formally order E to be smaller than any power of A then equation (62) can be made the 
defining equation for 2(112) to all orders in E ,  thus providing broadening for all 
resonances. 
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5. Stationary, homogeneous turbulence 

As in quasilinear theory (Vedenov et al 1962, Drummond and Pines 1962) we work to 
first order in E .  We shall use the generalized Fokker-Planck collision operator of the 
previous section. From equations (35) and (43) we have 

k(1) = I d2 F(1)2)H1(2). (63) 

The average part of K is given by equations (42) and (44), and can be written 

K(1) = Ho( 1) + A ( l ) ,  (64) 

where 

In a homogeneous system the first term vanishes. 
We write equation (62) in conservation form 

(66) 
where we have taken the qi to be Cartesian components of the position vector x. We use 
a dyadic notation in which 

N N  
A: B = AjiBip 

i = l  j=1  

We assume the system to be homogeneous and stationary on average, so that all two 
point functions depend on xl, t l  and x2, t2 only through x1 -x2 and tl - f 2 .  Define the 
Fourier transform of an arbitrary function A (xl -x2, tl - t2) by 

= I dNx dt exp(-ik . x + iwt)A (x, t ) ,  

so that 

We make an exception in the case of G,,,, which is defined by 

iGk,,(pl,p2) = dNx dt exp(4k .x  +iwt)G(x,pl, t10,p2, 0), 

the reason for the factor of i being to make Gk,o real outside the resonant region. 
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Also needed are the Fourier transforms Ik,, and Jk,+, of the interaction Hamiltonian 
correlation functions 

From equation (63) we see that these are related by the equation 

We have defined the unrenormalized velocity u1 by 

U1 = a~o(pd/ap1. (75) 

Equations (70)-(74) form a coupled set of non-linear integral equations, whose 
solution determines the renormalized Green function and collision kernel self- 
consistently. 

6. Asymptotic solution 

In the present paper we shall be content to obtain a qualitative understanding of the 
solutions. To do this we work in the limit 

k >> k‘, I4 >>Iw‘l, - (76) 
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where k' and U' are a typical wavevector and frequency of a wave in the turbulent 
spectrum. 

The first benefit of the limit (76) is that the last three terms of equation (74) can be 
neglected. Physically, this means that spatial diffusion is the dominant process at short 
wavelengths. The second advantage is that Gk-k,,,-u' can be replaced by Gk,u and 
brought outside the integral. It is then consistent with both equation (72) and equation 
(74) to assume that Gk,u and &,, are proportional to S(pl - p 2 )  

Gk,,(pl,PZ) = G&,W@l)S(Pl - P A  (77) 

and similarly for &,U. Henceforth Gk,, and 
z k , ,  (p), respectively. 

that equations (72) and (74) reduce to 

will be taken to denote Gk,,@) and 

Assuming Ik,, to be independent of p 1  and p2 (electrostatic approximation) we find 

(78) 
1 

= w -k .  0 - k .  ah/ap +izk,,' 

and 

where 

We define Fkf,,,< by 

Fk',m'k))  E dNp' Fk',u'(p, p') .  

Solving equations (78) and (79) for Et,+, we find 

where O ( x )  is the Heaviside step function, and 

0, E - k . tr - k . (aA/ap). 

Equation (82) shows that the real part of &,, (which gives the effective damping due 
to particle-wave collisions) vanishes outside the range 

2(kk : B)'/' < In, 1 < 2(kk : .9)l/'. 

Thus the width of the resonance goes as k in the short wavelength limit. As already 
noted, spatial diffusion is dominant in this limit, so it is not surprising that the width of 
the resonance should scale differently from the k2l3 behaviour expected from a simple 
Wiener process model. Note however that the width does not scale according to a 
Brownian motion model with constant spatial diffusion coefficient either. This model 
would predict k 2  behaviour. 

Strictly speaking we cannot calculate 9 from this asymptotic analysis because Fk,,,, 
cannot be calculated without violating the condition (76). Nevertheless we can make a 
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rough estimate. First note from equation (82) that at large lfkkl we can approximate 2k.W 

by 

When k is comparable with k‘ we cannot replace xk-kt , , , - , , r  with in equation (74). 
The result of the convolution integral will be to smooth out the discontinuous behaviour 
of &,,, so that it will be approximately given by 

x k , , ,  -ikk : Ba/fkk.  

ik’k’ : 9 
= nk, + 2iS” (83) 

We assume that the width is, to within a constant of order unity, given by (k’k: 9)1’2, so 
we can write 

S f =  (k’k’: 9) l l2  COS 8’,  (84) 

where 8’ is a constant of order unity. 
Provided that the turbulent spectrum has a sufficiently wide range of phase velocities 

(much greater than the trapping width), it is valid to retain equation (77) as an 
approximation. In this case it can be shown also that k’.dA/ap is negligible in 
comparison with 6’ .  It then follows from equations (71) and (78) that 

-k’k’: 9 
Fk*,,,* = 

(of -k‘ .  u+ia+)(w’-k’. o+iS-) 

where S, = (k’k’ :9)’l2 exp(ki0’). 
In the broad spectrum approximation it is valid to write 

From equation (85)  we have 

where x = (0’- k’ . u)/(k’k’: B)1’2, and 

(4/tr)(x2 +cos28’) 
g(’)= ~ ( x  -i exp(ie’))(x -i exp(-i8’))14* 

Note that g ( x )  falls off as lxlW6 as Jx(+oo. In the broad spectrum limit we can 
approximate g ( x )  by a delta function 

g ( x )  =po(O’ )  6 ( x )  (88) 

where po(8’) is the integral of g ( x )  from --CO to +-CO. Using contour integration we find 
po(8’) = (4+s2+s4)/4s, where s =sec 8’. 

Upon substitution of equations (86)-(88) in equation (80), it is found that 

dNk’ dw’ ~ p o ( 0 ’ )  a(o‘-k’ .  U) k’k’ 
T I k ’ , u ‘ *  (k’k’ : 9 ) ’ 1 2  m (89) 

In the one-dimensional case the dispersion relation o’ = U k *  will pick out a single value 
of Jk’l for each value of U. Denoting this resonant wavevector by k, we can solve 
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equation (89) for 93 to find 

k:.9 = (po(O’)k:D)2/3, 

where D is the quasilinear diffusion coefficient (Vedenov et a1 1962, Drummond and 
Pines 1962): 

Substitution of equation (90) in equation (84) gives 

8’ = cos f9’(po(fl’)k:D)’/3. 

To within a constant of order unity equation (92) is in agreement with the width 
found by Dupree (1966), assuming purely velocity space diffusion. As our derivation 
was based on spatial diffusion it is clear that the two processes contribute approximately 
equally to resonance broadening in the region k - k,, while we have shown that spatial 
diffusion is the dominant mechanism for k >> k,. Of course as k + 0 it is clear from 
equation (74) that velocity diffusion becomes dominant. A method for obtaining an 
approximate solution for all values of k will be the subject of a subsequent paper. 

7. Conclusions 

We have developed a canonical perturbation theory for the single particle propagator 
which allows systematic calculation of non-linear effects and the inclusion of resonance 
broadening. The use of Green functions is reminiscent of quantum field theory and 
statistical mechanics (Kadanoff and Baym 1962); conversely, the Poisson bracket 
structure of the perturbation theory should allow straightforward quantization. 

In this paper we have given the formal structure of the theory and indicated how it 
works in the simplest case: that of homogeneous, stationary electrostatic turbulence. 
There appears to be no reason why the theory cannot treat more complex situations, 
and in fact it is ideally suited for handling any problem which can be cast in Hamiltonian 
form. For instance the complex geometrical problems inherent in toroidal geometry 
can be simplified by using the theory of action-angle variables (Kaufman 1972). 
Another application is to the theory of coupled modes where the Hamiltonian now 
describes not a particle, but a set of coupled oscillators. 

In order to apply the theory to plasma turbulence we must make the interaction 
Hamiltonian self-consistent with the particle distribution function through Maxwell’s 
equations, and thus calculate linear and non-linear dielectric response functions, and 
hence wave-wave scattering coefficients (Johnston and Kaufman 1976). The theory 
will also be used to develop a kinetic theory along the lines of the dressed test particle 
method. This will require an extension of the Marcuvitz-Cook formalism to make the 
Green function self-consistent with Maxwell’s equations, in order to include 
polarization effects. 
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